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NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS ON
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1. INTRODUCTION

The discretization of differential equanons is often done onarmepular gndsan an atiempl to concentrate
points where the solution is most rapidls changing  Perlaps the reason s toimprove the accuracy of the
approximate solution of to illuminate regiens where the selalen is mostanteresting  Inany case, many
authors have noted that the order of the truncai o emor associgted with fimwe differencey detined on
irregular gnds is less than those defined on umiform, enes  For example. the second -divided difference has

truncation error,

) 2ulx) u(x, D
n'-ll. .- AR e i e e rememen + . .
) A. 4'?{-\. «le ¥ A. "J‘ AIO'Q‘-\I -la Al—"l(Aa in + AI -"1'

(1.h
7 I [ 2
su(x)+ a (A o= A W72+ 0 A,

whichasclewly 0wy on aneven moderateIyv aimegular gnd  Below, we shetch the standard convergence
proof fora timite diftcrence approxamatson,
Lv=F . (1.2

W aditiereniian equanion (and assougted boundan conditions

lutan)=f
The trundation crrur. 1,18 delined by applyving the difference operator o the exact solution.

Lyu=F +1 (13
Ancyguation for the enror. e = u - v s found by subtracting 11 2y trom (1 2,

Lytu-viml,e=1x (o

*Ihit work wat dime under the suspurs of the 1 S Diepaiment of Snergs under Contracs N W 240t NG A
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bounded independent of the mesk: size; that is,
Ll s €
Thus, if the dificrence schemc 1s stable, we get the usual result,
le.<Clz (1.5

Thus result gives rise 10 the rule of thumb tha, the approximate solution, v, converges to the exact

solution, &, a1 the same ratc that the truncation error Converges 1o zene

Coupling this rule of thumb with (1.1}, it 1s often thought that the accuracy of a fimte di“">rence scheme
employing the second divided difference must be degraded on an ieguiar gnd A number of remedics
hav ¢ been sugpesied to ciumvent this apparent loss of accuaoy - use of gaas:-regular gnds where the
mesh sizes change by O (A%, Boftman [ 11, use of smooth mesh trasformanons 1o define a new
diffcrence equation on a regular gnd, Whte [?]. soluti i of the diflerential equations rewntien as a first

order system Keller [ 3, and use of imphait difterence approvimatons, Daocde! (4]

However, in recent work on ordinan differennal equations Manteuffel and White 18], Kreiss et al (611
has been shown that, in some cases, this apparent loss of accuracy is an arifact of the siandard
convergence proof and may not actually occur  The following simple example shows how this might

happen  The difference equations.,

V, -y,
v.=A = 4 f(2)=0, i =12, . | 6
‘ T W, WP | s (
where A, 41, = 1,,) — 1, are an approximation o
di
wuh=4 ., “Yafar=0 Tt
dh
The truncanion error s casily seen 1o be
A|‘,i-—Al 14 .
1. =- e MY+ O\ BRY

Al"'l + An--'ﬁ

and, thus, the difference approximation (1 6 1s inconsistent swith the diiferential equation (1 1

However, before we abandon tis scheme, let us take a closer look at the errer Reaalhng o] 4) and
rewnhng the truncahon error, (1 ) ignonng terms which are O (A), we get the following difference

equations for the error, ¢, caused by the inconsisient term in (1 R),

'I-'I ‘ RI—RI l

= vt 40N, 020D . (14,
’-")(-\,.', + l“ h“ ’-"(A\‘.h.. 4 A, l,) !

where

| 1 --.; Al"ﬁu ‘(‘I”ﬂ) (1 9t



Solving (1.93) for ¢, , we gel
&=g=0(A)

Thus, the error, ¢. due 1o the leading order term in (1.8) 1s really O(4). not O (1) as we might have

suproscd from the truncation error

In a more gencra! setting. which will be the template for what follows in the remairung sections, the error

equation on an irregular gnd mighi be wnuen as
Lie=1+1 . (110
where 1, is that pant of the truncation error exphicily caused by the irmegular grid and
1, =0, .= 07
If we can rewnie 1) in the following way,
el e+0N | =047, (1.1
as in (1.9a), then (1.10) becomes
Lite =) =1+ 02" w1, (11
Al this point, the usual convergence proof can be emploved o get
e - € <Cl4
and since both ¢ and 1; are O (A7 ). we have
fu-v|=0(A")

The hey, of counc. 1s being able to satisfy (1.11). In Section 2, we will examine two “upwind® diffcrence
schemes discussed in Pike [ 7] for approumanng the solution of the scalar wave equation on an irrepular,
but Cantesian product gnd  In Secuon 3, we will illustrate the difficalties that ansc from a mesh allow o
10 movc irregularly in ume, by approximatng the solution of a simple heat equatior on sucha gnd In

Sccuion 4, we will make some bncf commenis on this work

2. HYPERBOL.IC EQUATIONS ON PRODUCT GRIDS

In this section, we will examine (using hyperbolic equations as a vehicle) the error analy us of difference

schemes on prede 1 gnds. In parucular, we will look at (x,r) gnds of the form
GalLhi= ), QN

that is, the gnd is a p.roduct of two, one dimensional. iregular grids  For 1 different approach e this
problem, sec, fur example Orszag and Jayne 8] or Chin [9] Pike [7] has noted that although an upwind

difference scheme for

c du + du 0 20
- . F

d" d‘ (A- - '
with first order truncation error is easily found, the scheme is not conservative  He then denves a

rwnceruative echame far (9 7)) namealv
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but notes that the iruncation error is. O (1) on an irregular gnd. However, computation with these two
schemes leads to the observation that algorithm (2.3) yields solutions **similar in quality to the fisi-order
accurate nonconservative solution ™' In what follows, we will show that this remark is in fact correct, that

algorithm (2.3) is first-order accuralc.

Calculating the truncation crror for (2.3) yields the error equation,

A‘.‘-A‘
bune =Tun m =0 AL, +A

u, x, M+ 00 (2.4,

where O (A) here refers 1o terms both in Ax and AT. We note that the leading order term in (2 4) is due
entirely to the spatal difference in (2.3) In fact the upwind algonthm (2 3)1s precisely the same as (1.6

constdered in the introduction, with a time difference replacing f (x,)  Equations (1.9a.b) yield the

identity,
_k A
€ -6¢
Tuw = + OtA (2.50
‘:i\.\‘.t=+A_ i)
(‘_ P i N g
L ==l A g (X g ) (2 5hy

We also note that, because we are on a product gnd where each spatial mesh is the same,

€ -4 U (4, e =y (1, 0g )
L T S e, b bl i RS (2 0
A7 2 AT

provided the solution is sufficienily smooth Combining (2 Sa) and (2 6). we can rewnile the error

equation (2 4)asin (1.1 Thatas,

(-

lotle =€)y=01(N

where ¢ 1s defined in (2.8by and s clearly i\

Thus, we have shown that if the solution of (2.2) is sufficiontly smooth and if the dib erence seheme (0

is stable, then

1
Vi ua A ) O

e

That is, in spite of the 7ero order (inconsistenn truncation ermor, the approximiate soluiions, V2 ane hin

order accurale.

1ot's bnefly consider the solution of the nonhnear wave equation,
df (u) | du
/ 4 + 0,

dr dt

via the upwind difference scheme,



f (vlt) —f (‘.l‘—l ) v'ldl - "l‘
+ :
(B, up + B,.13) AT

No(v)m =0 . 2.4,

The truncation error is derived as before by replacing + ! with u (x, %),

’AA,,I,‘,- ’/ﬁA, .14 au,‘ af (u,")

N lt)=-
w04 188,004 4A,,) 0z du

+0()) .

However, just as in the linear case, the leading order term in the truncation error can be readily
incorporated into the nonlinear operaior,

N, G)=0()) . QG-
where
X
- 'y ‘ auuo". " Ls
= + eyl 1a —-—.—.— "u‘.
4 =u 3 A,.n T (

Now, combining (2.8) with the modificd truncation enor expression (2 9a.b) will vieid sharp error
esuimaics for the nonlincar problem.

3 PARABOLIC EQUATIONS ON NONPRODUCT GRIDS

In this section, we will be primarily concemed with the solution of the inhomogeneous heat equation .
onc-spatial dimension,

ou ou . .
Py -x P =f(x.) . (1

The . jditional complcxity will come from allowing the spatial grid points to move in time. We note 15
passing that if the mesh trajectonics are smooth functions of ¢, then we can transform to 3 new coordina:.
svstem and derive difierence schemes in the new coordinates on a product gnid. Thus, we will allow th.
mesh moton to be irregular.

In Ma. tcuffel and White [5]. 1t was shown that the truncation error for the second-divided dificrence (ses
(1 1)) can br wnitten as

Pl

D;u,=u,-+D;x,+OlA:) (-

l 17 2 [] P .
whereg, = - ¥ A ouay )= 0(A%). With this in hand. Iet's ook for a moment at a Crank
Iel

Nicholson type scheme defined on a product grid,

AT

Y

Lepvm

_"—; D'+ Dt =g (= 3

. . 1 .
Fventhing in (3.3) is contered about 3 (* 41t ") sothe only termsin the truncation error which ane ns

0 (A°) arc those associated with the irregular x-grd. Recalling (3.2), we have

]
ul = ul ) -
S ap T Ty 1Pt - ghe Daul - gt =14 00D (



Because the x -grid docs not change in time, the f-difference just passes through the gnd information,
yielding

glk—gnl-] 1 A? uu,(x,-:,,.t‘)—um(xf._%,ﬁ‘lﬂ
AT T B AT J

and if u (x 1) is sufficiendy smooth then

& k-1
S, - gl ~
2 O(A (3.5)
AT 0 (A
With (3.5) in hand,
Loy (ub=gh=f +0(A%) | (3.6)

Once again. employing (3.3) and (3.6), the standard convergence proof will yield a sharp error estimate
for (3.3) defined on a product grid.

Unfortunately, when the x-grid is allowed to move, (3.5) 18 no longer true unless some restrictions are
placed on the mesh movement. Recalling the definition of ¢, and for simphicity assuming that

U (x 1) =6, we have

, 1)
gt Lkt - @)y
=y | 3.7
AT = AT
In order for the argument to work as before, we need to show that this time difference is O (Az). A
sufficient condition is
Ak, - Axk]
ST LT 0(AT) (3 8)

AT

which is roughly equivalent to saving that 2} lies in the dotied. funnel-shaped region in Figure 3.1

In Levermore, Manteuffel, and White [10], it is shown that Crank-Nicholson-like schemes can be denved

which retain their second-order accuracy on meshes with the property that
=z 4 0¢AT) (29

This condition requires that 1} approach 2! ! in the V' -shaped region in Figure 3.1, is less restrictive than

(3.8), and morc reasenable.

A family of difference schemes depending on the point, (X .£4*"), at which the function, f (x.1), is
evaluated, is considered in Levermore et al. [ 10]. The stencil of interest for the (1.4 )-th equation is

shown in Figure 3.2.

, . N Y
We will compare the computational order of convergence of one of these schemes (X = 3 arlaah)

which has first-order truncation error with another scheme whose “runcation error happens to be (1 (A?)
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Figure 3.1.

Figure 3.2.

Mesh Motion Constraints, Six-point stencil,

The easiest way to display the differcnce scheme is as a first-order system, employing the definition,

wh, o b Th (3.10a)

With (3.10a) in hand, the approximation to (3.1) is given by

& k- * & . k-
vio bl whi, —whts,  whil -whi)
- —x{— +

AT A:t 4 + Aak—'/; Al‘;’dl + Al‘—_'ﬂl

k_ k-] ko Ak A
+1. X {(X.-A X)ywips = (Xas =Xy (3.10b)

AT Alvis+ Ay
(ah) - xwds) - (k) - xowlts)

AL+ AR

} =f (Xt

where X = % xrext NHand xh) = - Gl +xt).

-

| —

In the following two figures, we display the results of approximating an equation of the form (3.1)on a
sequence of irregular grids. Each point shows the maximum error versus maximum mesh size on a

1
N
satisfy (3.9). That is. given a grid point, x*~', at 1*~), the new grid point. x!, was chosen at random in the
allowable interval (sec V-shaped region in Figure 3.1). Once all grid points at t* were chosen. they were
sorted to prevent grid lines from crossing.

diffcrent mesh. Each mesh had a uniform ¢--.esh (AT = constant = —) and N x -grid points chosen to

Figurce 3.3 show: the accuracy of the scheme given by (3.10ab), whose truncation error is O (A). The
lcast-squares fit 1o this scattercd data (slope of line, 2.713) indicates that the approximate solutions are

0 (A?). For comparison, in Figure 3.4, we show the accuracy of a difference scheme which has 0(AY)
truncation error. There is no qualitative difference between these two figures, which lends credence to the
claim that, although the truncation eror of (3.10a,b) is O (A). the approximaie solutions retain O AY
accuracy even on an irregular, ponproduct grid.
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4. REMARKS

The truncation error associated with a finite difference scheme is often of lower order on an irregular grid
than on a uruform (or smoothly varying) one. Thus fact gives nise to the feeling that the accuracy of the
discrete solutions are likewise degraded. Fortunately, this is not always true. In fact, many schemes
retain the same rate of convergence as on a uniform grid. Unfortunately, this is not always truc either. as
secn in Kreiss et al. [6] for the Numerov scheme.

Throughout this work, we have made several assuw :ptions. First, we relicd on smooth exact solutions, so
the efficacy of these results for problems with shocks or contact discontinuities is in question. Second,
throughout. we assumed that the difference schemes examined were stable in the usua) sense. Thisis
often very difficult to prove for irregular gnds. Third. we have ignored boundary conditions altogether,
assuming that they can be approximaled appropriaicly.
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1. INTRODUCTION

The discretization of differential equations is often done on irregular grids in an attempt to concentrate
points where the solution is most rapidly changing. Perhaps the reason is to improve the accuracy of the
approximate solution or to illuminate regions where the solution is most interesting. In any case, many
authors have noted that the order of the trunc-tion error associated with finite differences defined on
irregular grids is less than those defined on uniform ones. For example, the second-divided difference has
truncation error,

2u (x,,1) 2u (x;) 2u(x,.y)
- +
QgD+ B,s)  BiasBis BB s+ B, )

Dzll 3

(1.1)
= u(x) + % (Brop = By ™(x,) + O (AY)

which is clearly O (A) on an even moderately irregular grid. Below, we sketc'1 the standard convergence
proof for a finite difference approximation,
L,v=F , (1.2)

1o a diffcrential equation (and associated boundary conditions),

Lu(xt)=f .
The truncation error, 1, is defined by applying the difference operator to the exact solution,

Lyu=F+1. (1.3)
An equation for the error, e = u — v, is found by subtracting (1.2) from (1.3),

Ly(u—-v)ymlye=1. (1.4)

*This work was done unde? the suspices of the U. S. Department of Energy under Contract No W-7405-ENG-36



Stability of the difference scheme implies that the inverse of the difference operator (matrix), L, , is
bounded independent of the mesh size, that is,

ILYscC .
Thus, if the difference scheme is siable, wee get the usual resuly,
el sClid . (1.5)

This result gives rise to the rule of thumb that ihe approximate solution, v, converges 1o the exact
solution, u , at the same rate that the truncation €rror converges 1o zero.

Coupling this rale of thumb with (1.1), it is ofien thought that the accuracy of a finite difference scheme
employing the second divided difference must be degraded on an isregular grid. A number of remedies
have been suggested to circumvent this apparent loss of accuracy: use of quasi-regular grids where the
mesh sizes change by O (A%), Hoffman [1); use of smooth mesh transformations to define a new
difference equation on a regular grid, White [2]; solution of the differentia] equations rewritten as a first-
order system Keller [3); and use of implicit difference epproximations, Doedel {4).

However, in recent work on ordinary differential equations Manteuffel and White {51, Kreiss et al. [6], it
has been shown that, in some cases, this apparent loss of accuracy is an antifact of the standard
convergence proof and may not actually occur. The following simple example shows how this might
happen. The difference equations,

vV, =V, .
= N —— )= R = ey .

v, = A 2Bt ) f(x)=0, i=12 (1.6)

where A, ., = X, 41 — X, , are an approximation 10
BO=4 . M 4rx)=0 (1.7
. dx J bl . . )

The truncation error is easily scen 10 be
A‘JA'A,.J/,

1, =—-———— U’ +0@0) , R
, A..:MA..%“(I') o) (1.8

and, thus, the difference approximation (1.6) is jnconsistent with the differential equation (1.7).

However, before we abandon this scheme, let us take a closer look at the error. Recalling (1.4) and
rewriting the truncaiion error, (1.8), ignonng terms which are O (4), we gei the following difference
equations for the error, €. caused by the inconsistent term in (1.8),

ln "(: -1
_ aTh kTR 0w, =12 (1.9a)
IA(AaA’/) + 4, ) IA(A‘ wmt b, y)

5. == A.‘JAM »’A) . (Igb)



